
Acoustic Scene Classification Using A Deeper
Training Method for Convolution Neural Networks

Tan Doan∗, Hung Nguyen†, Dat Thanh Ngo‡, Lam Pham§ and Ha Hoang Kha¶
Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology, VNU-HCM, Vietnam

Email: ∗tandoan.hcmut@gmail.com, †nguyenhonghung96@gmail.com@gmail.com, ‡datt.ngo.hcmut@gmail.com,
§lamd.pham@hcmut.edu.vn, ¶hhkha@hcmut.edu.vn

Abstract—In this paper, we present a deep learning framework
applied for acoustic scene classification (ASC) recognizing the
environmental sounds. Since an audio scene related to a given
location potentially contains numerous sound events, only few
of these events supply helpful information on the scene, which
makes the acoustic scene classification task become a very
complex problem. To confront this challenge, we suggest a novel
architecture consisting of two basic processes. The front-end
process approaches a spectrogram feature, using Gammatone
filters. Regarding the back-end classification, we propose a novel
convolutional neural network (CNN) architecture that enforces
the network deeply learning middle convolutional layers. Our
experiments conducted over DCASE2016 task 1A dataset offer
the highest classification accuracy of 84.4% as compared to
72.5% of DCASE2016 baseline.

Index Terms—Acoustic scene classification, deep learning,
convolutional neural network, Gammatone spectrogram.

I. INTRODUCTION

Acoustic scene classification (ASC), aiming to categorize
the types of locations where a sound was recorded, repre-
sents one of the main tasks of a recently appearing research
field named “machine hearing” [1]. By exploiting information
extracted from the soundscape, ASC is explored in various
applications such as context-aware services [2], audio archive
management [3], robotic navigation systems [4], and intelli-
gent wearable devices [5]. The most challenge of this task is
that a recording related to a given location can contain various
sound events. A well-learned model, therefore, should not only
focus on performing either background or foreground sounds.
Additionally, concerned issues may come from datasets that
show different class numbers, recording conditions, biased
recording time, making it the most challenging task in the
sound recognition area [6]. Hence, recent studies have ded-
icated to propose various methods for ASC task, and deep
learning approach has recently proven effectively [7].

For the front-end extracted feature considered as one main
step of an ASC model, mel-frequency cepstral coefficients
(MFCC) has widely applied to the research of speech firstly
explored in ASC [8]–[11]. Some did experiments on linear pre-
dictive coefficients (LPCs) to calculate a power spectrum of the
signal [12]. To explore the statistics on MFCC vectors, i-vector
which allows to compute statistic attributes has been widely
applied [13]. However, acoustic scenes are less structured
than speech signals explaining why the mentioned techniques
have not shown efficiency. To address this problem, spectro-

gram features inspired from researches on image processing
has recently employed in [14]. Regarding back-end learning
models, conventional classifiers, which proved effectively on
speech signals such as Gaussian mixture models (GMMs) [8],
support vector machines (SVMs) [15], and hidden Markov
models (HMMs) [16], were firstly exploited over the ASC
task. However, deep learning techniques have recently become
a trend for the ASC task [17] and have proved much more
effectively [7]. Convolutional neural networks (CNNs) [18]
are considered as the most effective classification for ASC
tasks, which were early applied [19] and has be shown to be
an effective approach. To enhance the classifier, various data
augmentation techniques have been approached. Traditional
methods are frequency shifting or timing extension mentioned
in [20]. These techniques were also used by [21], proving pitch
shifting more effective.

Inspired by the aforementioned techniques, this paper,
therefore, invokes Gammatone filters [22] to transform audio
segment into time-frequency shape before feeding into the
back-end classification. We then introduce a baseline proposal
based on CNN. Thus, motivated from the transfer learning
technique proposed in [23], we propose a training process
that forces the baseline learning the middle convolutional layer
deeper. This work also applies a data augmentation, namely
mixup that is useful to improve our model’s performance.
To evaluate the performance of our proposed method with
different neural networks, we conducted extensive experiments
over DCASE2016 task 1A dataset [24]. The experiments
demonstrate that our architecture outperforms the conventional
models such as GMM, SVM as well as the DCASE2016
baseline.

II. SYSTEM DESCRIPTION

A. Our Baseline Proposal

In this section, we introduce our baseline proposal de-
scribed as Fig. 1. The proposed baseline utilizes Gammatone
spectrogram in [22] for the front-end feature extraction. By
splitting the entire spectrogram into patches with the time and
frequency resolution of 128×128, these patches are then fed
into the back-end classifier. Regarding the back-end process,
the proposed model consists of four convolution blocks and
three fully connected layers as detailed in Table I. The first
convolution block, denoted as C01, uses batchnorm layers
between the input and the output of the convolutional layer
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Fig. 1. Our baseline proposal.

to speed up the training process and to avoid the Internal
Covariate Shift phenomenon [25]. After subsampling the ob-
tained feature maps with a max-pooling layer, the dropout
layer is employed for the purpose of preventing over-fitting.
The second and the third blocks, denoted as C02 and C03,
have a similar structure to C01, a part from no batchnorm
layer before convolutional layer. At the convolution block C04,
instead of using a max-pooling layer, a global-mean pooling
layer is applied to enhance the accuracy since all the spatial
regions contribute to the output while the max-pooling layer
considers the maximum value of local regions. The next three
fully connected layers, denoted as F01, F02, and F03, have
the role of classification. At the final layer, softmax function,
minimizing the cross-entropy as equation below, is applied to
tune parameters θ,

E(θ) = − 1

N

N∑
i=1

yi log(ŷi(θ)) +
λ

2
||θ||22 (1)

where E(θ) is the loss function with all parameters θ of the
proposed model, N is the total number of items of training
data, the sum is over all training inputs, the constant λ is set
to 0.0001 since we want the regularization effect to be small,
yi and ŷ are expected and predicted results, respectively.

TABLE I
THE PROPOSED CNN BASELINE

Notation Layer Output Shape Kernel Size/Drop

C01

BatchNorm 128x128x1
Conv 01 128x128x32 3x3

BatchNorm 128x128x32
Max pooling 64x64x32 2x2

Dropout 64x64x32 0.1

C02

Conv 02 64x64x64 3x3
BatchNorm 64x64x64

Max pooling 32x32x64 2x2
Dropout 32x32x64 0.1

C03

Conv 03 32x32x128 3x3
BatchNorm 32x32x128

Max pooling 16x16x128 2x2
Dropout 16x16x128 0.2

C04

Conv 04 16x16x256 3x3
BatchNorm 16x16x256

Global mean pooling 256
Dropout 256 0.2

F01 Fully-connected 512
F02 Fully-connected 1024
F03 Fully-connected 15

B. Deeper Training Method

Inspired by the FreezeOut method suggested by Andrew
Brock et al. [26], the training process only trains the hidden
layers for a set of portion of the training run, freezes them
out one-by-one and excluding them from the backward pass.
We then apply this training method on the baseline proposal
detailed in Fig. 2.

Our proposed deeper training process can be separated into
five sub-training processes namely process A, B, C, D, and
E. First, the training process A aims at deeply learning the
layer C01 of the baseline. By extracting the global mean of
this layer and adding more fully-connected layers known as
F11, F12, F13 and F14 detailed as Table II, we have another
loss function that focuses on learning the layer C01. Both loss
functions use (1) and the score is obtained from the original
loss function of the baseline proposal. In training process B,
we target the layer C02. We, therefore, extract global mean add
fully-connected layers to learn this layer while the trainable
parameters of layer C01, transferring from the training process
A, are remained. Similar to the previous training processes,
the C and D deeply learn layers C03 and C04 respectively.
Eventually, global mean of the final convolution layer C04 is
extracted and goes through a deep neural network as presented
in Table III.

C. Data Augmentation

By increasing data variation, data augmentation has shown
itself effective at improving performance in ASC tasks. In this

TABLE II
FULLY-CONNECTED LAYERS TO LEARN MIDDLE LAYERS

Notation Layer Output Shape
F11 Fully-connected 256
F12 Fully-connected 512
F13 Fully-connected 512
F14 Fully-connected 15
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Fig. 2. Our proposed deeper training method.

TABLE III
DEEP NEURAL NETWORK

Notation Layer Output Shape
F21 Fully-connected 512
F22 Fully-connected 1024
F23 Fully-connected 1024
F24 Fully-connected 15

case we apply the mixup technique to improve the between-
class training. Let X1, X2 and y1, y2 be the original inputs
fed into a learning model and expected one-hot labels from
two classes, respectively. From this we generate new mixup
data, as follows:

Xmp1 = X1 ∗ λ+X2 ∗ (1− λ) (2)

Xmp2 = X1 ∗ (1− λ) +X2 ∗ λ (3)

ymp = y1 ∗ λ+ y2 ∗ (1− λ) (4)

ymp2 = y1 ∗ (1− λ) + y2 ∗ λ (5)

with λ ∈ U(0, 1) is a random mixing coefficient.
We feed both original data and generated mixup data into

learning models to the double batch size from 100 to 200, and
considerably extend the training time of model. In this work,

we apply this technique to both our baseline proposal and our
proposed deeper training process (namely training process A,
B, C, D, E).

III. EXPERIMENT RESULTS

A. Dataset

This paper exploits the TUT Urban Acoustic Scenes 2016
dataset, DCASE2016 [24]. As regards the dataset, the audio
signals are recorded in six large European cities, in different
locations for each scene class. For each recording location,
there are 5-6 minutes of audio. The original recordings are split
into segments with a length of 30 seconds that are provided
in individual files and the sampling frequency is at 44100 Hz.
The dataset includes 15 scenes which are Bus, Cafe, Car,
City Center, Forest path, Grocery Store, Home, Lakeside
Beach, Library, Metro Station, Office, Residential Area,
Train, Tram, Urban Park. In this work, we use development
set to train the model and test over the evaluation set.

B. Baseline comparison

The obtained average accuracy over the evaluation set
reported by the proposed baseline method and by the
DCASE2016 baseline [27] is displayed in Table IV. Regarding
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Fig. 3. Performance comparison among DCASE2016 baseline [27], our baseline proposal and deeper training method.

results over the evaluation set, the classification accuracy on
our baseline proposal improves the accuracy by 6% compared
to DCASE2016 baseline. Specifically, while the accuracy
acquired from our proposed baseline method over park class
is significantly higher than from DCASE2016 baseline, the
results over Cafe/restaurant of our baseline is much lower.

C. Experiment Results After Deeper Training Process

Using mentioned deeper training method above, the overall
results are improved by almost 5% compared to the baseline
proposal, 11% compared to the DCASE2016 baseline as
shown in Fig. 3. As regards every class, our class accuracy
outperforms the baseline proposal, and our method enhances
almost the classification accuracy with the exception of the
Library.

Next, by looking at the confusion matrix in Fig. 4, we are
able to know which classes are mostly misclassified. These

TABLE IV
PERFORMANCE COMPARISON WITH THE DCASE2016 BASELINE

Class DCASE2016 Our Baseline Proposal
Beach 69.3 84.6
Bus 79.6 100

Cafe/rest. 83.2 61.5
Car 87.2 92.3

City Cent. 85.5 84.6
Forest path 81.0 100
Groc. store 65.0 84.6

Home 82.1 88.5
Library 50.4 50

Metro st. 94.7 88.5
Office 98.6 100
Park 13.9 96.2

Resid. area 77.7 69.2
Train 33.6 65.4
Tram 85.4 100

Overall 72.5 79.7
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Fig. 4. Confusion matrix for the proposed method evaluated on the evaluation
set.

results prove that our model depends more on the background
noise than on acoustic event occurrences.

Finally, the overall result of our method is compared with
the results of DCASE2016 challenge [27], which is reported
in Table V (noting that only single classification models are
mentioned since plenty of methods show ensemble approach).
The number in Table V reveals that our best result is very
competitive to the top results over the single classification and
the CNN approach shows strong classification.



TABLE V
PERFORMANCE COMPARISON WITH TOP-TEN DCASE2016 ON THE EVA

SET - DCASE2016

System Classifier Accuracy
Bae et al. [28] CNN-RNN 84.1
Lee et al. [29] CNN 84.6

Takahashi et al. [30] DNN-GMM 85.6
Kumar et al. [31] SVM 85.9
Valenti et al. [7] CNN 86.2
Bisot et al. [32] NMF 87.7

Our method CNN-DNN 84.4

IV. CONCLUSIONS

This paper has presented a novel deep learning framework
for the classification of acoustic scenes. Our approach is
developed by using on the front-end Gammatone spectrogram
and the back-end CNN classification. To deal with implicit
challenges in the ASC task, we investigated whether Gam-
matone spectrogram features could be effective to compare
with other spectrogram features as CQT or log-Mel, and
whether applying the deeper learning method could improve
classification accuracy, allied with the mixup technique. For
future research, we plan further investigation on different
classifier fusions, as well as explore a combination of bag-
of-features front-end processing, since it likely enables us to
obtain better performance.
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